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The Non-Compact Quantum Dilogarithm and the
Baxter Equations

R. M. Kashaev1
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A review of the recent formulation of the quantum discrete Liouville model in
the strongly coupled regime (corresponding to the Virasoro central charge
1<c<25) is presented. The Q-operator, describing the integrable structure of
the model and satisfying a pair of dual Baxter equations, is obtained as a certain
non-homogeneous transfer-matrix associated with the six-vertex model.
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1. INTRODUCTION

In the paper(8) the quantization problem of the discrete Liouville equa-
tion(9) has been considered in the framework of the algebraic approach
to quantum integrable models in 1+1 dimensional discrete space-time
developed in refs. 11, 12, 14, 15. It has been shown that the quantum dis-
crete Liouville model in the strongly coupled regime can be formulated as
a well defined quantum mechanical problem with unitary evolution operator.
The integrable structure of the model has been demonstrated by constructing
the Q-operator satisfying a pair of (dual) Baxter equations.(5, 6)

The main purpose of this paper is to review and elaborate on some
technical details of the paper.(8) First, we remind briefly the main proper-
ties of the noncompact quantum dilogarithm, describe the Q-operator of
the quantum discrete Liouville model as well as the Baxter equations.
Then, the Q-operator (together with the derivation of the Baxter equations)
will be obtained as a specialization of the non-homogeneous transfer-
matrix associated with the six-vertex (XXZ) model. The idea of derivation
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of the Baxter equations, given in this paper, originally goes to Baxter him-
self.(5) In refs. 4, 7 it was realized in the context of the chiral Potts model,
and in refs. 1�3 in the context of quantum conformal field theory. The dual
Baxter equations in a different context were also considered recently by
Smirnov.(13) Our derivation essentially coincides with that presented in
ref. 8. It is based on the use of non-ultra-local variables.

2. THE NON-COMPACT QUANTUM DILOGARITHM

In this section, following ref. 8 we review some properties of the non-com-
pact quantum dilogarithm, the main building element for the Q-operator.

Let complex b have a nonzero real part Rb{0. Denote cb=
(b+b&1)�2. The non-compact QDL, �(z), z # C, |Jz|<|Jcb |, is defined by
the formula

�(z)#exp \&
1
4 |

+�

&�

e&2izxdx
sinh(xb) sinh(x�b) x+ (1)

where the singularity at x=0 is put below the contour of integration. This
definition implies that �(z) is unchanged under substitutions b � b&1,
b � &b. Using this symmetry, we choose b to lay in the first quadrant of
the complex plane, namely

Rb>0, Jb�0

which implies that Jcb>0.

2.1. Functional Relations

Function (1) satisfies the ``inversion'' relation

�(z) �(&z)=e&i?z2+i?(1+2cc
b)�6 (2)

and a pair of functional equations

�(z+ib\1�2)=(1+e2?zb\1
) �(z&ib\1�2) (3)

The latter equations enable us to extend definition of the QDL to the entire
complex plane.

When b is real or a pure phase, function �(z) is unitary in the sense
that

(�(z))*=1��(z*), if either Jb=0, or |b|=1 (4)
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If self-adjoint operators p and q in L2(R) satisfy the Heisenberg commuta-
tion relations

[p, q]=
1

2?i
(5)

the following operator five term identity holds:

�(q) �(p)=�(p) �(p+q) �(q) (6)

For real b this can be proved in the C*-algebraic framework.2 See ref. 8 for
the proof in the case of complex b by the use of the integral Ramanujan
identity.

2.2. Analytic Properties

Let Jb2>0. We can perform the integration in (1) by the residue
method. The result can be written in the form

�(z)=(e2?(z&cb) b&1
; q� 2)� �(e2?(z+cb) b; q2)� (7)

where

q=ei?b2
, q� =e&i?b&2

and

(x; y)�# `
�

j=0

(1&xy j ), x, y # C, | y|<1

Formula (7) defines a meromorphic function on the entire complex plane,
satisfying functional equations (2) and (3), with essential singularity at
infinity. So, it is the desired extension of definition (1). It is easy to read off
location of its poles and zeroes:

zeroes of (�(z))\1=[\(cb+mib+nib&1) : m, n # Z�0]

The behavior at infinity depends on the direction along which the limit is
taken:

�(z) | |z| � �r{
1
ei?z2+i?(1+2c2

b)�6

3(ib&1z; &b&2)�(q� 2; q� 2)�

(q2; q2)��3(ibz; b2)

|arg(z)|>?�2+arg(b)
|arg (z)|<?�2&arg(b)
|arg z&?�2|<arg b
|arg z+?�2|<arg b

(8)
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where the standard notation for the 3-function is used:

3(z; {)# :
n # Z

ei?{n2+2?inz, J{>0

Thus, for complex b, double quasi-periodic %-functions, generators of the
field of meromorphic functions on complex tori, describe the asymptotic
behavior of the non-compact QDL.

2.3. Integral Ramanujan Identity

Consider the following Fourier integral:

9(u, v, w)#|
R

�(x+u)
�(x+v)

e2?iwx dx (9)

where

J(u+cb)>0, J(&v+cb)>0, J(u&v)<Jw<0 (10)

Restrictions (10) actually can be considerably relaxed by deforming the
integration path in the complex x plane, keeping the asymptotic directions
of the two ends within the sectors \(|arg x|&?�2)>arg b. So, the enlarged
in this way domain for the variables u, v, w has the form:

|arg(iz)|<?&arg b, z # [w, u&v&w, v&u&2cb] (11)

Integral (9) can be evaluated explicitly by the residue method, the result
being

9(u, v, w)=
�(u&v+cb) �(&w&cb)

�(u&v&w+cb)
e&2?iw(v&cb)&i?(1&4c 2

b)�12 (12)

=
�(v+w&u&cb)

�(v&u&cb) �(w+cb)
e&2?iw(u+cb)+i?(1&4c2

b)�12 (13)

where the two expressions in the right hand side are related to each other
through the inversion relation (2). In ref. 8 this identity has been demon-
strated to be an integral counterpart of the Ramanujan 1�1 summation
formula.
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2.4. Fourier Transformation of the QDL

Particular values of 9(u, v, w) lead to the following Fourier transfor-
mation formulas for the QDL:

,+(w)#|
R

�(x) e2?iwx dx=9(0, v, w) | v � &�

=e&2?iwcb+i?(1&4c 2
b)�12��(w+cb)=ei?w2&i?(1&4c2

b)�12�(&w&cb) (14)

and

,&(w)#|
R

(�(x))&1 e2?iwx dx=9(u, 0, w) |u � &�

=e&2?iwcb+i?(1&4c 2
b)�12��(&w&cb)

=e&i?w2+i?(1&4c2
b)�12�(w+cb) (15)

The corresponding inverse transformations read:

(�(x))\1=|
R

,\( y) e&2?ixy dy (16)

where the pole at y=0 is surrounded from below.

3. QUANTUM DISCRETE LIOUVILLE MODEL

Referring for details to paper, (8) here we briefly describe the essentials
of the quantum discrete Liouville equation. It reads as

wm, t+1wm, t&1=(1+qwm+1, t)(1+qwm&1, t) (17)

where

m, t # Z, m+t=0 (mod 2)

dynamical variables wm, t are elements of the observable algebra (see
below), and q=exp(i?b2), b is the coupling constant (or square root
thereof ).

The Virasoro central charge in the continuous limit is expected to be
given in terms of b by the standard formula

c=1+6(b+b&1)2
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3.1. Algebra of Observables

The algebra of observables is generated by a finite set of self-adjoint
operators [fm , m # Z], satisfying the periodicity condition with period 2N,

fm+2N=fm , N>1, N=1 (mod 2) (18)

and the defining commutation relations:

[fm , fn]={(&1)m (2?i)&1,
0,

if n=m\1
otherwise

(19)

The initial data for the field variables in (17) are just the exponentials of
the generating elements:3

wm, &[m+1]2
=e2?bfm

where

[m]2#(1&(&1)m)�2, \m # Z (20)

The evolution operator U, satisfying U&1wm, mU=wm, n+2 , has the form

U= `
N

j=1

�(f2j ) F `
N

k=1

�(f2k&1) (21)

where operator F changes signs of the generators:

Ffm=&fmF

4. BAXTER EQUATIONS

The order in products with non-commuting entries will be indicated as
follows:

`
n�i�m

ai#an an&1 } } } am+1 am , `
m�i�n

ai#am am+1 } } } an&1an

Consider algebra B2N of operators with linear basis of the form

`
1�i�2N

e2?ifixi
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where self-adjoint operators fi satisfy commutation relations (19), and
variables xi take real or complex values.

The ascending cyclic product is a set of linear mappings,

o+
j : B2N � B2N , j # Z, o+

j =o+
j+2N

acting diagonally on basis monomials:

o+
1 \ `

1�i�2N

e2?ifixi+#e2?ix2Nx1 `
1�i�2N

e2?ifi xi#o+
j \ `

j�i� j+2N&1

e2?ifixi+
Consider the transfer-matrices

t\(+)=o+
1 Tr `

1� j�2N

L\
j (22)

where

L\
j #\e&(&1) j ?b\1fj

0
0

e(&1) j ?b\1fj+\ e(&1) j ?b\1+

e&(&1) j ?b\1+

e&(&1) j ?b\1+[ j+1]2

e(&1) j ?b\1+ + (23)

see also (20), and the trace is that of two-by-two matrices, and

Q(+)=o+
1 \ `

1� j�2N

w[ j]2
(+, f j )+ G (24)

where

e&2?i+x�(x&+) wi (+, x)# {�(x++),
1,

if i=0
if i=1

(25)

and G is defined by its action on the generators:

Gfm=(&1)m fm&1G (26)

These transfer-matrices commute among themselves

[t=(+), t\(&)]=[Q(+), Q(&)]=[t\(+), Q(&)]=0, ==\

and solve the following Baxter equations:

t\(+) Q(+)=Q(++ib\1�2)+(1&e&4?b\1+)N Q(+&ib\1�2) (27)
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A remark is in order. The product of two neighboring L-operators
L+

2i L+
2i+1 is equivalent to the spectral parameter dependent L-operator

introduced in ref. 10 for the description of the Liouville equation in the
framework of inverse scattering method.

4.1. Connection to the Evolution Operator

The evolution operator for the lattice Liouville equation (17) is related
to the Baxter operator through the following formula:

U&1=(Q(0))2 P (28)

where P and F act on generators according to formulae

Ffm=&fmF, Pfm=fm+2P

and are given by integer powers of the operator G:

F=G2N, P=G&2N&2

The Q-operator (24) commutes with operator G. That means Q(+) is
the generating function of conserved quantities for the quantum discrete
Liouville equation:

[U, Q(+)]=0

Moreover, it is clear that the spectrum of the evolution operator is
straightforwardly determined from the spectrum of the Q-operator.

5. DERIVATION OF THE BAXTER EQUATIONS

For any positive integer M we define algebra AM with linear basis of
the form >M�i�1 e2?iai xi, where self-adjoint operators [ai ] i # Z , ai+M=a i ,
satisfy the ``lattice current algebra'' relations:

[am , an]={(2?i)&1,
0,

if n=m+1
if |m&n|{1

and variables xi take real or complex values.
Define the descending cyclic product as a set of invertible linear map-

pings

o&
j : AM � AM , j # Z, o&

j =o&
j+M
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diagonally acting on basis monomials:

o&
1 \ `

M�i�1

e2?iai xi+#e&2?ix1xM `
M�i�1

e2?iaixi#o&
j \ `

j+M&1�i� j

e2?iai xi+
The usual product of two cyclic products can be written as a single cyclic
product

o&
1 \ `

M�i�1

e2?iai xi+ o&
1 \ `

M� j�1

e2?iaj yj+
=e2?i(x1 yM+xM y1)o&

1 \\ `
M�i�1

e2?iai xi+ `
M� j�1

e2?iaj yj+ (29)

=e2?ixM y1o&
1 \\ `

M�i�2

e2?iai xi+ e2?iaM yMe2?ia1x1 `
M&1� j�1

e2?iaj yj+ (30)

=e2?ixM y1o&
1 \e2?iaM xM \ `

M�i�2

e2?iai&1xi&1 e2?iai yi+ e2?ia1 y1+ (31)

First, we shall derive the Baxter equations in the most general form,
and then identify the case, corresponding to the quantum discrete Liouville
model, as a particular (limiting) case.

Define completely non-homogeneous transfer-matrices

T\(+)=o&
1 Tr `

M� j�1

4\
j

4\
j =\e&?b\1aj

0
0

e?b\1aj+ \e?b\1(2:j++)

e?b\1(2#j&+)

e?b\1(2;j&+)

e?b\1(2$j++)+ (32)

where +, :j , ;j , #j , $j , 1� j�M, are complex parameters, and

Q(+)=o&
1 \ `

M� j�1

Wj (+, a j )+ PAM

Wj (+, x)#
�(x+++$j&;j )
�(x&++#j&:j )

e2?ix(++:j&;j) (33)

and PAM
is the translation operator in the algebra AM :

PAM
aj=aj+1PAM

, PM
AM

=1
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Lemma 1. The following Baxter equations are satisfied:

T\(+) Q(+)=Q(++ib\1�2) `
M

j=1

e?b\1(:j+;j)

+Q(+&ib\1�2) `
M

j=1

2 sinh(?b\1(2++_ j )) e?b\1(#j+$j) (34)

where _j#:j+$j&;j&#j .

Proof. To begin with, note that the following equations hold:

4=
i&1 Wi (+, a i )=R=

i 4=
i&1 , ==\ (35)

where

R=
i =\Wi (+, ai+ib= �2)

0
0

Wi (+, ai&ib= �2)+ , b\#b\1

Next, introducing expansions

4=
i = :

x=\ib= �2

l=
i(x) e2?ixai (36)

we calculate

T=(+) Q(+) P&1
AM

=o&
1 Tr :

x=\ib=�2

e2?ixaMl =
M(x) \ `

M�i�2

4 =
i&1Wi (+, ai )+ W1(+, a1+x)

��we have used formula (31) for the product of two cyclic products��

=o&
1 Tr :

x=\ib= �2

e2?ixaMl =
M (x) R=

M\ `
M&1�i�2

4 =
i R

=
i+ 4 =

1W1(+, a1+x)

��Eq. (35) has been applied M&2 times��

=o&
2 Tr :

x=\ib= �2

4=
1 W1(+, a1+x) e2?ixaMl =

M(x) R=
M `

M&1�i�2

4=
i R

=
i

��we have moved operator 4=
i W1(+, a1+x) to the leftmost position by

using simultaneously cyclic properties of the trace and the cyclic product��

=o&
2 Tr :

x=\ib= �2

4=
1 e2?ixaMl =

M(x) W1(+, a1) R=
M `

M&1�i�2

4=
i R

=
i
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��operator W1(+, a1) has changed its position by two steps to the right��

=o&
2 Tr \4 =

14=
MW1(+, a1) R=

M `
M&1�i�2

4=
i R

=
i +

��now we have taken off the expansion (36)��

=o&
1 Tr `

M�i�1

4=
i R

=
i =o&

1 Tr `
M�i�1

L =
i

we have applied one more time Eq. (35), brought operator 4=
i R

=
1 back to

the rightmost position, and made the gauge transformation of the form

L=
i =\1

1
0
1+ 4 =

i R
=
i \ 1

&1
0
1+

=\2&
i Wi (+&ib= �2, ai )

0
Wi (+, ai&ib= �2) e&?b=(ai++&2;i)

2+
i Wi (++ib= �2, a i ) +

2&
i #2 sinh(?b=(2++_ i )) e?b=(#i+$i), 2+

i #e?b=(:i+;i)

The right hand side of the Baxter relations now follows easily. K

Let us choose now M=3N. Define two sets of parameters

X#[:3j&1 , $3j&1 , $3j&2 | 1� j�N ]

and

Y#[:i , ;i , #i , $i | 1�i�M ]"X

For any complex a and any set of complex numbers S we shall denote by
S � a the limit where each element of S approaches a.

Lemma 2. Operators T\(+) and

Qren(+)#Q(+) `
N

j=1

e&i?(++:3j&1&#3j&1)2
(33)

are nonsingular in the limit, when X � &� and Y � 0, and the corre-
sponding limiting operators, T\

lim(+) and Qren
lim(+), satisfy the following

Baxter equations:

e?b\1N(++ib\1�4)T\
lim(+) Qren

lim(+)

=Qren
lim(++ib\1�2)+(1&e&4?b\1+)N Qren

lim(+&ib\1�2) (37)
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Proof. The non-singularity of the limit is easily seen from the defini-
tions (32) and (33) of the operators, and the behavior of the QDL at
infinity described by Eq. (8). Baxter equations (37) for the limiting
operators are just the limits of Eq. (34). K

Define a faithful, star-structure preserving homomorphism of algebras

}: B2N � A3N

by its action on the generators:

f2i [
}

a&3i , f2i+1 [
}

a&3i&2&a&3i&1 (38)

Additionally, define the image of the flip-shift operator G (see Eq. (26)) by
the formula:

G [
} \ `

N

j=1

ei?a2
3j&1+ PA3N

(39)

Lemma 3. Mapping } is such that

t\(+) [
} e?b\1N(++ib\1�4)T\

lim(+) (40)

Q(+) [
} e i?N(1+2c 2

b)�6Q ren
lim(+) (41)

where Q(+) and t\(+) are defined by Eqs. (22)�(25).

Proof. Let ==\. First, we have compatible cyclic products:

} b o+
2i | B2N

=o&
1&3i | A3N

b }, } b o+
2i+1 |B2N

=o&
&3i |A2N

b } (42)

Next, it is easily seen that

lim
X � &�, Y � 0

4=
3i=}(L=

&2i)

e?b=(++ib=�4) lim
X � &�, Y � 0

4=
3i&1 4=

3i&2=}(L=
&2i+1)

This proves Eq. (40). Finally, we have

ei?N(1+2c2
b)�6Qren

lim(+)=o&
1 \ `

N� j�1

w0(+, a3j ) e i?a2
3j&1w1(+, a3j&2)+ PA3N

��we have used notation (25)��

=o&
1 \ `

N�1�1

w0(+, a3j ) w1(+, a3j&2&a3j&1)+ \ `
N

j=1

ei?a2
3j&1+ PA3N
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��we have pulled all the Gaussian exponentials out of the cyclic product��

=o&
0 b } \ `

1� j�2N

w[ j]2
(+, fj )+ }(G)=}(Q(+))

Here we have replaced operator w0(+, a3N) from the leftmost to the right-
most position (simultaneously replacing o&

1 by o&
0 ), then used definitions

(38) and (39), and applied the second formula in Eqs. (42) at i=0. K
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